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Abstract—In this paper, a robust pose (i.e., position and
orientation) estimation algorithm using two-views captured by
a calibrated monocular camera is presented. A collection of
pose hypotheses is obtained when more than the minimum
number of feature points required to uniquely identify a pose
are available in both the images. The pose hypotheses - unit
quaternion and unit translation vectors - lie on the S* and S?
manifolds in the Euclidean 4-space and 3-space, respectively.
Probability density function (pdf) of the rotation and transla-
tion pose hypotheses is evaluated by griding the unit spheres
where a robust, coarse pose estimate is identified at the mode
of the pdf. Further, a “refining” pdf of the geodesic distance
from the coarse pose estimate is constructed for the hypotheses
within a grid containing the coarse estimate. A refined pose
estimate is obtained by averaging the low-noise hypotheses in
the neighborhood of the mode of refining pdf. Pose estimation
results of the proposed method are compared with RANSAC
and nonlinear mean-shift (NMS) algorithms using the Oxford
Corridor sequence and the robustness to feature outliers,
image noise rejection, and scalability to number of features is
analyzed using the synthetic data experiments. Processing time
comparison with the RANSAC and NMS algorithms indicate
that the deterministic time requirement of the proposed and
NMS algorithms is amenable to a variety of visual servo control
applications.

Keywords-robust pose estimation, two-view geometry, outlier
rejection

[. INTRODUCTION

OTIVATED by practical applications such as au-
tonomous guidance, navigation and control (GNC),
and intelligence, surveillance, target acquisition and recon-
naissance (ISTAR) various image-based techniques have
been developed including visual servo control, visual odom-
etry, and structure from motion. The underlying framework
of these methods is based on an estimate of the relative
pose (i.e., position and orientation) between the two-views
obtained by an imaging device. For a monocular camera, the
rotation and direction of translation are estimated, whereas
in case of a stereo-vision system, the rotation and Euclidean
translation vectors are estimated.
The physical and geometric features of an object or
scene such as points, lines, and circles are typically used
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to determine the relative pose between the two viewpoints
of a moving camera or the pose of a moving object with
respect to a stationary camera (see [1]-[5] and references
therein). In this paper, we focus on the problem of esti-
mating the relative pose of a camera using point features
as the camera moves between the two viewpoints. Often
the feature point correspondence between the two images is
provided by a feature tracking algorithm, such as the KLT
tracker [6], SIFT [7] and SURF [8]. We assume that the
feature correspondence or “loosely speaking” the matching
problem is solved and a set of point correspondences is
available between the two-views. The assumption merely
requires a set of point correspondences between the views
but does not make any assumption regarding the outliers
or false matches present in the correspondences. Given a
minimal set of point correspondence, the relative pose can
be estimated using a number of algorithms, e.g., the eight
point algorithm [9], seven point algorithm [10], five point
algorithm [11]. However, point correspondences returned
by a feature tracker invariably contain gross mismatches
or large errors in the feature point locations, which are
commonly referred to as outliers. The central issue in pose
estimation is devising a class of robust estimators that
can reject such outliers. Various optimization schemes such
as the iterative weighted least-squares [1], M -estimators
[12], [13], and least-median of squares (LMedS) [12]-[15]
gained significant interest but suffer from the drawbacks of
the optimization methods. Kumar et al. [12] found exper-
imentally that the M -estimators are susceptible to initial
estimates and demonstrate a low breakdown point. While
LMedS-based methods can achieve a higher breakdown
point of 0.5 [14]-[17] additional measures, e.g., weighted
least-squares, may be required due to poor efficiency in the
presence of Gaussian noise [13], [17]. The most popular
approach to robust pose estimation problem has been the
hypothesize-and-test methods, such as RANSAC [18] and its
variants: MLESAC [19], PROSAC [20], GOODSAC [21],
pre-emptive RANSAC [22], randomized RANSAC [23],
[24], SCRAMSAC [25], etc. Wherein the hypotheses are
generated by random, a prior assessment driven [21] or on-
line adaptive [20] selection of the minimal set of feature
point correspondences required to generate a pose hypoth-
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esis. Each hypothesis is scored based on the number of
feature points in both the views that are well-explained by
it and a hypothesis with the best score is declared as the
desired estimate, and the corresponding feature points are
classified as “inliers”. Often the pose estimation is followed
by pose refinement where the least squares optimal solution
is computed using the obtained set of inliers. Most of the
extensions to basic RANSAC scheme focus on reducing
the computation time, since generating a large number of
hypotheses (which is required to obtain a good estimate
with high probability) and scoring them is computationally
expensive. Due to the hypothesize-and-test framework, the
solution as well as computation time of RANSAC are
inherently non-deterministic, i.e., for the given set of point
correspondences the pose estimate and computation time
may vary between the different runs. Further, RANSAC
and other hypothesize-and-test methods choose only one
of the many hypotheses that are or can be generated; all
other hypotheses are ignored even those that may be quite
close to the true pose. Each hypothesis can be considered
as a noisy “measurement” of the relative pose that is to be
estimated. In principle, one should be able to average the
measurements in the vicinity of true pose in an appropriate
sense to compute a more accurate estimate than any of the
individual measurements (i.e., hypotheses). Clustering-based
methods [26], [27] follow the above principle by generating
a large number of pose hypotheses and identifying a pose
estimate in the clustered space, e.g., the SE(3) manifold.
In this paper, we propose a robust pose estimation algo-
rithm based on the clustering principle using multiple pose
hypotheses generated from the feature point correspondences
between the two views. There are two challenges that impede
the development. First, many of the pose hypotheses will be
corrupted by outliers and will show poor accuracy. Including
these corrupted measurements in the averaging process may
lead to little improvement, if any. The second difficulty is
that since a pose is not a member of vector space, it is not
clear how to average multiple noisy pose measurements.
To address these challenges, we estimate the rotation
and (unit) translation in a decoupled manner. The rotation
hypotheses are expressed as unit quaternions, which lie on
a 3-sphere (i.e., a unit sphere in Euclidean 4-space). The
probability density function (pdf) of unit quaternions on 3-
sphere is obtained, wherein the dominant cluster correspond-
ing to the mode of pdf gives rise to a coarse pose estimate.
A “refining” pdf of the geodesic distance from the coarse
pose estimate is constructed for the hypotheses within a
grid containing the coarse estimate. The “low-noise” rotation
hypotheses identified within a small geodesic distance of
the mode of refining pdf are averaged according to [28]
to produce a refined rotation estimate. Estimating the unit
translation proceeds in an identical manner, except now the
data lies on a unit 2-sphere in Euclidean 3-space. When a
Euclidean translation vector (direction as well as magnitude)
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is available, say from a stereo camera, the mode estimation
and averaging is simpler since the data lies in a vector space.
Because of the role played by gridding of the unit sphere
in 3 or 4 dimensions, the proposed algorithm is called the
Pose Estimation by Gridding of Unit Spheres (PEGUS).

In contrast to hypothesize-and-test methods wherein the
objective is to determine the largest inlier set, the proposed
algorithm averages the information from a number of hy-
potheses that are likely to be close to the true pose. As
a result, it comes up with a more accurate estimate than
RANSAC-type methods. Our algorithm has certain simi-
larities with the non-linear mean shift algorithm proposed
in [27]; the similarities and differences between the two are
discussed in Section II. Another advantage of the PEGUS
algorithm is that it does not involve any iterative search, so
that the time required for its execution is highly predictable
making PEGUS suitable for various closed-loop visual servo
control applications.

II. RELATED WORK

There are certain similarities between our approach and
the non-linear mean shift algorithm by Subbarao et. al. [27],
in which a set of generated hypotheses are used to construct
a kernel-based estimate of the pdf of the pose hypothesis in
SE(3). A non-linear version of the mean-shift algorithm is
then used to iteratively search for the mode of pdf starting
from an arbitrary initial condition. The identified mode is
declared the pose estimate. Since all the hypotheses used
to construct the pdf contribute to the mode, and the mode
may not coincide with any of the hypotheses, the resulting
estimate can be thought of as an average of the hypotheses,
though the averaging is of an implicit nature. In short, the
approach in the proposed PEGUS algorithm as well as
that in [27] treat pose estimation as a clustering problem.
Both construct estimates of the probability density (or mass)
function from a set of generated hypotheses and returns an
averaged hypothesis as the pose estimate rather than a single
hypothesis from those generated.

Despite the similarities between the two approaches, there
are significant differences between the proposed PEGUS
algorithm and the non-linear mean shift algorithm of [27].
First, the PEGUS algorithm is more robust to multi-modal
densities of the generated hypotheses than the mean shift
method. In the presence of multi-modal pose distribution,
the iterative search involved in the mean shift algorithm
may converge to a local maxima depending on the initial
condition. In contrast, since we construct a histogram-based
estimate of the pmf (probability mass function) of the
hypotheses locating the global mode is trivial even with
multi-modal densities. The pmf of the rotation hypotheses
is constructed by gridding a unit sphere in 4 dimensions
on which the unit quaternion representations of the corre-
sponding rotations lie. The same approach is applicable to
unit translations where gridding is done on a unit sphere in



3 dimensions. If both the magnitude and direction of trans-
lation can be estimated then the histogram is constructed by
dividing a region of R? into a number of equal volume cells.

The second major difference is that the non-linear mean
shift algorithm returns the mode as the estimate, whereas
the proposed method uses the mode only to identify a set
of hypotheses that are likely to be close to the true pose,
i.e., to obtain the rough pose estimate. These “low-noise”
hypotheses are then explicitly averaged in an appropriate
manner to construct the final refined pose estimate. In
addition, the proposed method does not involve iterative
computation, whereas the mean-shift algorithm requires an
iterative search for the mode. On the other hand, the non-
linear mean-shift algorithm is applicable to a wide variety
of estimation problems in which data lies on Riemannian
manifolds, whereas the proposed method is only applicable
to problems in which the data lies on spherical surfaces or
real coordinate spaces.

III. PROBLEM STATEMENT AND APPROACH

The objective is to develop a robust pose estimation
algorithm using two images captured by a monocular camera
(or four images if a pair of cameras are used) and without
the knowledge of the scene. Let R denote the true rotation
between two views and t be the true translation. The
translation can be a unit translation if the scale information
is not available.

If there are M pairs of feature points between two views
captured by the camera and the minimal number of feature
point pairs required to generate a pose hypothesis are P, then
the total number of pose hypotheses that can be computed
iS Nmax (A}f) We first generate m such hypotheses,
where n is typically much smaller than Ny,... Each pair
in the generated rotation and translation hypotheses is a
“noisy measurement” of the true rotation R and true (unit)
translation ¢, respectively. Some of these measurements, i.e.,
hypotheses, suffer from a large inaccuracy. Our approach is
to select a subset of “low-noise” hypotheses from the set
of all possible hypotheses so that they are close to the true
rotation and translation. The low-noise hypotheses are then
appropriately averaged to compute a pose estimate.

To facilitate extraction of the low-noise hypotheses,
each rotation hypothesis is expressed in terms of its unit-
quaternion representation. Since the unit quaternions ¢ and
—q represent the same rotation, we ensure that the unit-
quaternion representation of a rotation hypothesis has the
first component positive, i.e., if ¢ = ¢ + iq1 + jq2 + kqs3
then ¢, > 0. A unit quaternion representation of a rotation
matrix can now be thought of as a unit-norm vector in R*
whose first component is positive. That is, it lies on the “top”
half of the 3-sphere S3. The d-sphere S¢ is defined as

Sti={zx=[z1,...,2q41])F € R |z| =1}

ey
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where || - || denotes the Euclidean norm. Similarly, we define
ST = {z e R ||z|| = 1,2, > 0}. 2)

Therefore, each rotation hypothesis is an element of S37.
Similarly, each hypothesis of the unit translation is an
element of S2. If scale information is available, translation
hypotheses are elements of R instead of S2.

Since each rotation hypothesis is a noisy measurement of
the true rotation, the rotation hypotheses can be thought of
as realizations of a random variable whose distribution is
defined over the half-sphere S>*. By dividing the surface
of the sphere S® and counting the number of rotation
hypotheses (rather, their unit-quaternion representations), we
can estimate the pmf of rotation random variable. The mode
of the pmf is a point in the bin that has the largest number
of unit-quaternions. A subset of these quaternions that are
within a predetermined geodesic distance of the mode is
selected, and then averaged in an appropriate manner to ob-
tain the desired rotation estimate. Estimation of translations
proceed in a similar manner. The algorithm is described in
detail in the following section.

IV. PROPOSED ALGORITHM
A. Rotation estimation

Step 1: Hypotheses generation engine: Not all of the
possible pose hypotheses are computed. Instead, we use a
sampling with replacement strategy to generate a number of
hypotheses that have small “correlation” among one another.
The number of such hypotheses to be generated, n, is a
design parameter that has to be specified a priori. The
sampling strategy consists of selecting the first feature point
pair at random from the M pairs, then selecting the second
pair from the remaining M — 1 pairs, and so on until the
P-th pair is selected. These P pairs of point correspondence
are used to generate a hypothesis. This sampling procedure
is repeated n times to generate m hypotheses, which are
denoted by ¢;,t;, where ¢; is a unit-quaternion and ¢; is a
translation vector (unit-norm or otherwise), fort =1,...,n.
The set of these n rotation hypotheses is denoted by S, and
the set of translation hypotheses is denoted by S;.

The reason for not computing all the possible hypotheses
is that total number of possible pose hypotheses, Npax
is typically extremely large, since Npax = (), where
M is the number of point correspondence and P is the
minimal number needed to generate a hypothesis. For ex-
ample, even a small value of M, e.g., 21, with P = 8
yields Npmax = 203490. Processing such a large number
of hypotheses is computationally infeasible, especially since
the pose hypothesis generation is computationally intensive.
In addition, processing all N,,,, hypotheses is not necessary
since most of these hypotheses will be “correlated”, as they
are generated from overlapping feature point sets.

It turns out that the method of generating the n hypotheses
described above leads to a “uniform sampling” over the set



of all the possible hypotheses. This is described in more
detail in Appendix A. As a result, even with a small value
of n (= 50) the method yields good pose estimates.

Step 2: Estimating the mode: Each ¢; is imagined to be
the realization of a random variable q with an unknown
distribution defined over S3*. The 3-sphere S® is divided
into a number of regions of equal area, or bins, that are
denoted by B;, j = 1,...,K,, where K, is the number
of regions. The algorithm described in [29] is used for this
purpose. The pmf of the random variable q over the bins
B;, which is denoted by p(Q), is an array of K, numbers:

(q) = P(q € Bj), where P denotes probability. A histogram
estlmate (@ of the pmf p(? is com%)uted by counting the
number of points g; inside each bin: p;* = = Zi:l B, (),
where I4(z) is the indicator functlon of the set A. That is,
Io(z) = 1if 2 € A and 0 otherwise. A useful property
of the histogram-based estimate is that p (Q) is an unbiased

estimate of p(‘I) even if the samples used to construct the
estimates are correlated. Let Bj« be the bin in which the
pmf attains its maximum value, i.e., j* = argmax; (pg‘n).
An estimate of the mode of the pmf p(9) is obtained by
taking the arithmetic mean of the unit-quaternions g;’s lying
in Bj- and then normalizing the mean, giving the coarse
pose estimate denoted by ¢* € S3+.

Further, the geodesic or Riemannian distance dg4(q*, ¢;)
between the coarse pose estimate ¢* and g;’s lying in B«
is computed. The pmf of d,(¢*,q;) Vg; € B} is obtained
using K. equidistant bins of size e, = [maxd,(q*, ¢;) —
mindg(g*, ¢;)]/Kqe. The dominant cluster in Bj- is iden-
tified corresponding to the bin Beg«, ek € {1,2,..., Ky},
where the pmf of d,(¢*,¢;) attains maximum value. The
choice of the design parameter K ;. depends on the noise
present in the measurements, such that K. should be chosen
sufficiently large to reject the noisy measurements. The
objective of the geodesic pmf is to find a refined pose
estimate by identifying a cluster within B}.

Step 3: Extracting low-noise measurements: Once the
refining pmf of d,(¢*,¢;) is obtained, a subset Q, C S,
of rotation hypotheses ¢; € S, is selected such that

(Bﬁj* - 1)5q +7] < dq(q*aQZ) < BEj*Eq + m, (3)

where n € R denotes the minimum geodesic distance
mind,(q*, ¢;). The distance function dy(-,-) in (3) is the
Riemannian distance between two rotations qi, g2 € S37 is
given by

d(R1, Rs) =

(RTRy)||F, 4)

1
\/ill log
where R, Ro € SO(3) are the rotation matrix representa-
tion of ¢1, g2, and the subscript F' refers to the Frobenius
norm.
Step 4: Averaging low-noise data: Let N1 be the number
of elements in the low-noise measurements of rotation @,
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obtained as described above and let R; denote the rotation
matrix corresponding to ¢; € (4. The optimal average of
the rotation matrices R; ... Ry, in the Euclidean sense is
the matrix R that satisfies [28]

N,

R = argmin ||R; — R|?
M .

&)

It was shown by Moakher [28] that R defined by (5) can
be computed by the orthogonal projection of the arithmetic
average R = ZZ 1 N"b onto the special orthogonal group

SO(3) by
R= RUdlag( - 1_ _)UT (6)
where the orthogonal matrix U is such that
RTR=UTDU and D = diag(A1,A2,A3), (7

and s =1 if det R > 0 and s = —1 otherwise.

The matrix R computed using (6) is the desired estimate
of the true rotation R.

B. Estimating translation

The estimation scheme for unit translation is very similar
to that for the rotation. The unit translation data ¢; € S;,
1 = 1,...,n represent realizations of the random variable
t with an unknown distribution defined over the 2-sphere
S2. The 2-sphere S? is divided into a number of bins of
equal area B;, j = 1,..., K, K; € N [29]. A histogram
estimate p*) of the pmf p(t), where p(t) =P(t € B;) is
then computed by counting the number of points ¢; in Bj.
An estimate of the mode of the unit translation distribution,
denoted by t*, is determined by computing normalized aver-
age of ¢;’s corresponding to bin B;- in which the pmf takes
its maximum value: j* = argmax; ﬁ;t). The pmf of the
geodesic distance d;(t*, ¢;) is obtained using K. equidistant
bins of size e, = [maxd;(t*,t;) — mind;(¢t*,t;)]/Kie and
let B.;- be the bin in which the pmf attains its maximum
value. Once the mode ¢* is identified, the low-noise data set
Q: is selected by choosing those ¢; € S; that satisfies

(Bej= — er +n < dy(t*,t;) < (Bej= — L)er +n,  (8)

where n € R denotes the minimum geodesic distance
min d;(t*, ;). Let N3 be the number of elements in the low-
noise data set (); of the unit translations obtained above. The
normalized arithmetic mean of the unit translations in the set

Q@ given by

N: i
Zz 21 1&72

Hzl L

is taken as the estimate of the unit translation ¢.

C))




V. PERFORMANCE EVALUATION

The performance of the proposed algorithm is compared
with RANSAC and nonlinear mean-shift (NMS) algorithms.
For each algorithm, the estimation performance metric is
designed in terms of deviation from the known rotation
and translation, i.e., a ground truth. The true rotation and
translation between the frames in an ¢-th image pair are
denoted by R(i) and t(¢), respectively. The rotation and
translation estimation error for the i-th image pair, denoted
by er(i) and e.(i), respectively, are defined as

er(i) = |1 = R@)TRG)||, ex(i) = [[t(0) — i(@)[l, (10)

where R(i) and #(i) are the estimates of rotation R(i) and
unit translation ¢(¢), || - || denotes the 2-norm, and I denotes
a R3*3 identity matrix.

Oxford Corridor sequence [30] has been used to demon-
strate the robustness of the presented PEGUS algorithm in
comparison to RANSAC and NMS algorithms. The dataset
consists of 11 images with matched feature point pairs and
the ground truth in the form of camera projection matrix for
each camera frame. The number of feature point matches
between the first and ™ image, Vi 2,3,...,11, are
as follows: [409, 409, 269, 269, 199, 199, 149, 149, 104, 104].
Given the feature point matches, pose estimates can be ob-
tained between the first and i camera frame using PEGUS,
RANSAC, and NMS algorithms. For each algorithm and for
each image pair 1000 random trials are used to obtain 1000
pose estimates, i.e., for PEGUS and NMS different feature
point combinations are used for the 1000 trials whereas for
RANSAC as well as NMS different initial conditions are
used. The mean rotation and translation pose estimation
errors are shown in Figs. 1A and 1B, respectively, and
Figs. 1D and 1E show the error standard deviation based
on n = 50 pose hypotheses used for the PEGUS and
NMS algorithms. The mean and standard deviation of the
processing time is shown in Figs. 1C and 1F, respectively.

It can be seen from Fig. 1A that the rotation estimation
performance of the three pose estimation algorithms is
comparable to each other with PEGUS showing a marginal
improvement over the other two methods. However, PEGUS
demonstrates a significant improvement in the translation
estimation performance compared to both RANSAC and
NMS algorithms. The presented PEGUS algorithm shows
visible translation estimation error for the last four frames
when the number of matching features and inliers have
decreased. The processing time plots shown in Figs. 1C and
1F indicate predictable processing times for the presented
PEGUS and NMS algorithms, whereas the processing time
for RANSAC increases with reduction in the number of
inliers. Visual servo control methods relying on the rotation
and translation estimates to design a stabilizing control low
for a physical system are inherently sensitive to the process-
ing time delay. Therefore, a pose estimation algorithm, such
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as PEGUS, ensuring bounded and predictable processing
time can improve the performance and stability of such
control systems.

VI. SYNTHETIC EXPERIMENTS

Synthetic data is produced to analyze the robustness, scal-
ability, and behavior of pose estimation error with respect to
the image noise. A random cloud of 100 Euclidean points
was generated and projected on the image plane using a pin-
hole camera model. The Euclidean point cloud is viewed
from two distinct camera positions with the known relative
rotation and translation serving as a ground truth. 25%
feature outliers were added by corrupting the 25 projected
image point matches and a zero-mean Gaussian noise of
standard deviation o = 0.1 pixels was added independently
to the x and y coordinates of the point cloud. The number of
hypotheses for pose estimation using the PEGUS and NMS
algorithms are assumed to be n = 50. The parameter values
specified above are used throughout this section unless
otherwise specified. In the subsequent results, the notation
¢ = {z : 9 : y} implies that the value of parameter ( is
varied from z to y with an increment of §.

A. Robustness to outliers

Robustness of the three pose estimation algorithms, PE-
GUS, RANSAC, and NMS, is analyzed by varying the
percentage of outliers P, from 0% to 95% with an increment
of 5% and the outliers were added randomly to the synthetic
data. For each case, the experiment was repeated 1000 times
and pose estimates were obtained using PEGUS, RANSAC,
and NMS algorithms.

The plots of mean rotation and translation estimation
errors as a function of the percentage feature outliers are
shown in Figs. 2A and 2B, respectively. As per the expec-
tation, the performance of all the algorithms deteriorate as
the number of outliers increase. From Fig. 2B it can be
seen that the mean translation estimation error using PEGUS
is minimum among the three algorithms, while RANSAC
performs better in rotation estimation (see Fig. 2A) for the
percentage outliers above 60%.

B. Scalability

Scalability of PEGUS is studied through synthetic exper-
iments by varying the number of feature points M from 10
to 500 with an increment of 10. For each experiment 1000
random trials were conducted to obtain the mean rotation
and translation estimation errors as shown in Fig. 3. It is
evident that the presented algorithm incurs a large pose
estimation error for less number of available feature points.
This is due to the presence of a large number of correlated
hypotheses that are corrupted by outliers. However, it can be
seen that the pose estimation error remains steady even for a
large number of feature points thus demonstrating suitability
of the hypothesis generation scheme presented in Section
IV-A, Step 1.
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Oxford Corridor sequence: Mean and standard deviation of the rotation estimation error (A and D), translation

estimation error (B and E), and processing time (C and F) exhibited by PEGUS, RANSAC, and NMS algorithms

using 1000 random trials.
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Figure 2. Robustness analysis: Mean of the rotation and translation estimation errors for PEGUS, RANSAC, and NMS
algorithms using 1000 random trials of the synthetic data for the percentage feature outliers P, = {0:5:95}.

C. Sensitivity to noise

A set of synthetic experiments were carried out to com-
pare the performance of PEGUS with RANSAC and NMS
algorithms in the presence of zero mean Gaussian image
noise. The noise standard deviation is varied from 0 to 4
pixels in the increments of 0.1 pixel. Figs. 4A and 4B show
the performance comparison in terms of the mean rotation
and translation estimation errors, respectively, as a result
of 1000 random trials. The estimation performance of all
the methods deteriorates with increase in the image noise.
Although PEGUS may not show significant improvement
over RANSAC and NMS algorithms in terms of noise re-
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jection, the estimation performance of PEGUS is comparable
to these methods.

VII. CONCLUSION

A robust two-view relative pose estimation algorithm is
presented. Hypothesize-and-test methods such as RANSAC
ignore all but one of the good hypotheses, whereas the
proposed algorithm identifies a set of “low-noise” pose
hypotheses among the large number of possible hypotheses
to obtain a coarse pose estimate. Identification of the “low-
noise” set of hypotheses is simplified by expressing the
rotations as unit-quaternions and constructing a pmf by grid-
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Figure 4. Effect of the zero-mean Gaussian image noise on the (A) mean rotation estimation error and (B) mean translation
estimation error for PEGUS, RANSAC, and NMS algorithms based on 1000 random trials of the synthetic data
for the noise standard deviation o,, = {0:0.1:4} pixels.

Mean rotation error pfe_]

Mean translation error u[e‘]

Mean estimation error
o
= o
(5 N

o

o
=3
@

OO 100

400 500

200 300
Number of features

Figure 3. Scalability analysis: Effect of the number of fea-
ture points M on the mean rotation and translation
estimation errors based on 1000 random trials of
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M = {10:10:500}.

ding S%. A refined pose estimate is obtained by constructing
another pmf of the geodesic distance on S®. An identical
scheme is used for unit-translations, except that the hy-
potheses lie on a unit sphere in 3-dimensions. Experimental
results demonstrate improved performance of the proposed
method against RANSAC as well as non-linear mean shift, in
terms of both the estimation accuracy and computation time.
Since the proposed method does not involve any iterative
search, its computation time is more predictable than that
of RANSAC. Also, robustness analysis using synthetic data
demonstrated improved translation estimation behavior of
the presented algorithm over RANSAC and NMS.

APPENDIX

The accuracy of the pose estimates obtained by PEGUS
algorithm depends on the n pose hypotheses generated in
Step 1. In this section we describe some of the properties
of the hypotheses generation scheme used in the algorithm.

Each distinct P pairs of point correspondence leads to a
distinct hypothesis of ¢ and ¢. Let h be the random variable
representing the hypothesis that is obtained when the Simple
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Random Sampling With Replacement (SRSWR) scheme is
executed. The possible values that h can take are denoted by
hiyi = 1,..., Nmax. Each h; represents a pair ¢;,t; since
there exists a map from each set of P feature point pairs to
hypotheses h;, for instance, using the 8-point algorithm.

Proposition 1: The SRSWR scheme for hypotheses gen-
eration ensures that each possible hypothesis is obtained with
equal probability, i.e., P(h = h;) = 5= —.

Proof: A hypothesis h is uniquely defined by the P
point correspondence used to generate it, which are denoted
by f1, f2,..., £, We assume that the all feature point pairs
are sorted to have increasing index from 1 through M.

P(h=h;) =P(f' = hl, £2 =h2 ... fF =1l

8
= [[PeE* = nfigh=t = nlt L =)
k=2

x P(f! = h})
B 1 1 1
T M-(P-1)M—-(P-2) "M

where the second equality follows from the chain rule of
conditional probability. The third equality follows from the
fact that once the first & point correspondence are picked,
the probability of picking the next correspondence among
the remaining points is 1/(M — k). Further, the generated
hypothesis h; is independent of the order of feature point
correspondence. Therefore, the probability P(h = h;) in (11)
can be re-written as

1D

1 1 1
P(h = h;) Mf(Pfl)Mf(PfQ)'”MP'
(M -pP)IP 1
- M! " Nopax a2

where the definition of P-combination of set M presented
in Section IV-A is used. From (12), it can be seen that a
hypothesis h; consisting of P pairs of point correspondence
is sampled with a probability of 1/Ny,ax and replaced before
the next draw is taken. Due to sampling with replacement,



the probability of selection of next hypothesis remains
unchanged. Therefore in the presented algorithm, a subset
h; Ch,j =1,...,n of hypotheses from the total possible
hypotheses is selected with a uniform probability of 1/Nax.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. Haralick, H. Joo, C. Lee, X. Zhuang, V. Vaidya, and
M. Kim, “Pose estimation from corresponding point data,”
Systems, Man and Cybernetics, IEEE Trans. on, vol. 19, no. 6,
pp. 1426-1446, Nov/Dec 1989.

B. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nlle, “Re-
view and analysis of solutions of the three point perspective
pose estimation problem,” Int. J. of Comput. Vision, vol. 13,
pp. 331-356, 1994.

T. Q. Phong, R. Horaud, A. Yassine, and P. D. Tao, “Object
pose from 2-D to 3-D point and line correspondences,” Int.
J. of Comput. Vision, vol. 15, pp. 225-243, July 1995.

F. Dornaika and C. Garcia, “Pose estimation using point and
line correspondences,” Real-Time Imaging, vol. 5, pp. 215-
230, June 1999.

A. Ansar and K. Daniilidis, “Linear pose estimation from
points or lines,” Pattern Analysis and Machine Intelligence,
IEEE Trans. on, vol. 25, no. 5, pp. 578-589, May 2003.

C. Tomasi and T. Kanade, “Detection and Tracking of Point
Features,” Carnegie Mellon University, Tech. Rep. CMU-CS-
91-132, Apr. 1991.

D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, pp. 91-110,
November 2004.

H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up
robust features,” in Comput. Vision, Proc. European Conf.
on, 2006, pp. 404-417.

H. C. Longuet-Higgins, “A computer algorithm for recon-
structing a scene from two projections,” Nature, vol. 293, no.
5828, pp. 133-135, 1981.

R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

D. Nistér, “An efficient solution to the five-point relative pose
problem,” Pattern Analysis and Machine Intelligence, IEEE
Trans. on, vol. 26, no. 6, pp. 756-770, June 2004.

R. Kumar and A. Hanson, “Robust methods for estimating
pose and a sensitivity analysis,” CVGIP: Image Understand-
ing, vol. 60, no. 3, pp. 313-342, 1994.

Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A ro-
bust technique for matching two uncalibrated images through
the recovery of the unknown epipolar geometry,” Artificial
Intelligence, vol. 78, no. 1-2, pp. 87-119, 1995.

P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, “Ro-
bust regression methods for computer vision: A review,”
Int. J. of Comput. Vision, vol. 6, pp. 59-70, 1991,
10.1007/BF00127126.

85

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

P. Rosin, “Robust pose estimation,” Systems, Man, and Cy-
bernetics, Part B: Cybernetics, IEEE Trans. on, vol. 29, no. 2,
pp- 297-303, Apr. 1999.

A. F. Siegel, “Robust regression using repeated medians,”
Biometrika, vol. 69, no. 1, pp. 242-244, Apr. 1982.

P. J. Rousseeuw and A. M. Leroy, Robust Regression and
Outlier Detection (Wiley Series in Probability and Statistics).
Wiley.

M. A. Fischler and R. C. Bolles, “Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography,” Communications of the
ACM, vol. 24, pp. 381-395, 1981.

P. H. S. Torr and A. Zisserman, “MLESAC: a new robust
estimator with application to estimating image geometry,”
Comput. Vision and Image Understanding, vol. 78, no. 1, pp.
138-156, 2000.

O. Chum and J. Matas, “Matching with PROSAC - pro-
gressive sample consensus,” in Comput. Vision and Pattern
Recognition, Proc. IEEE Comput. Society Conf. on, vol. 1,
2005, pp. 220-226.

E. Michaelsen, W. V. Hansen, M. Kirchhof, J. Meidow, and
U. Stilla, “Estimating the essential matrix: GOODSAC ver-
sus RANSAC,” in Photogrammetric Comput. Vision (PCV),
ISPRS Symposium on, 2006, pp. 220-226.

D. Nistér, “Preemptive RANSAC for live structure and motion
estimation,” J. of Machine Vision and Applications, vol. 16,
pp- 321-329, December 2005.

J. Matas and O. Chum, “Randomized RANSAC with Ty 4
test,” Image and Vision Computing, vol. 22, no. 10, pp. 837-
842, Sept. 2004.

O. Chum and J. Matas, “Optimal randomized RANSAC,”
Pattern Analysis and Machine Intelligence, IEEE Trans. on,
vol. 30, no. 8, pp. 1472-1482, Aug. 2008.

T. Sattler, B. Leibe, and L. Kobbelt, “SCRAMSAC: Improv-
ing RANSAC’s efficiency with a spatial consistency filter,”
in Comput. Vision, Proc. IEEE Int. Conf. on, Oct. 2009, pp.
2090-2097.

G. Stockman, S. Kopstein, and S. Benett, “Matching images
to models for registration and object detection via clustering,”
Pattern Analysis and Machine Intelligence, IEEE Trans. on,
vol. 4, no. 3, pp. 229-241, May 1982.

R. Subbarao, Y. Genc, and P. Meer, “Nonlinear mean shift for
robust pose estimation,” in Applications of Comput. Vision,
Proc. IEEE Workshop on.  Washington, DC, USA: IEEE
Comput. Society, 2007, p. 6.

M. Moakher, “Means and averaging in the group of rotations,”
SIAM J. on Matrix Analysis and Applications, vol. 24, 2002.

P. Leopardi, “A partition of the unit sphere into regions of
equal area and small diameter,” Numerical Analysis, Elec-
tronic Trans. on, vol. 25, pp. 309-327, 2006.

Visual Geometry Group (VGG), University of Oxford, http:
/Iwww.robots.ox.ac.uk/~vgg/datal.html.



